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Let ),(= EVG  be a simple graph. A set VS   is independent set of G , if no two vertices of S  are adjacent. The 

independence number )(G  is the size of a maximum independent set in G . An independent set with cardinality )(G  is 

called a  -set of G . The problem of finding a  -set is NP-complete. We consider two kind of nanotubes and show that 

these two nanotubes have the same  -sets. Also we consider independence polynomial and obtain recurrence relations 

for independence polynomial of some polyphenyl hexagonal chains. 
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1.  Introduction 
 

A simple graph ),(= EVG  is a finite nonempty set 

)(GV  of objects called vertices together with a (possibly 

empty) set )(GE  of unordered pairs of distinct vertices of 

G  called edges. In chemical graphs, the vertices of the 

graph correspond to the atoms of the molecule, and the 

edges represent the chemical bonds. An independent set of 

a graph G  is a set of vertices where no two vertices are 

adjacent. The independence number )(G  is the size of a 

maximum independent set in the graph. An independent 

set with cardinality )(G  is called a  -set. The problem 

of finding a  -set is NP-complete even for the class of 

planar graphs, cubic planar graphs or triangle free graphs 

[10]. Tang Jian [9] has designed an exponential algorithm 

for solving maximum independent set problem for general 

graphs. For more details reader can refer to [3,5,6,12]. 

For a graph G  with independence number  , let ki  

denote the number of independent sets of cardinality k  in 

G  ( ,0,1,= k ). The  independence polynomial of 

G , ,=),(
0=

k
kk
xixGI 


 is the generating polynomial 

for the independent sequence ),,,,( 210 iiii   ([2,7]). 

The path 4P  on 4 vertices, for example, has one 

independent set of cardinality 0 (the empty set), four 

independent sets of cardinality 1, and three independent 

sets of cardinality 2; its independence polynomial is then 
2

4 341=),( xxxPI  . For more information the reader 

refer to [2,11]. 

Nanotechnology creates many new materials and 

devices with a wide range of applications in medicine, 

electronics, and computer. Nanotechnology is expected to 

revolutionize the 21st century as space, entertainment and 

communication technology revolutionized the 20th 

century. It involves different structures of nanotubes and 

nanostars. Recently these structures considered by several 

authors (see [1]).  

Spiro compounds are an important class of 

cycloalkanes in organic chemistry. A spiro union in spiro 

compounds is a linkage between two rings that consists of 

a single atom common to both rings and a free spiro union 

is a linkage that consists of the only direct union between 

the rings. The common atom is designated as the spiro 

atom. According to the number of spiro atoms present, 

compounds are distinguished as monospiro, dispiro, 

trispiro, etc., ring systems. Two or more benzene rings are 

linked by cut edges consisting of aromatics called 

polycyclic aromatic hydrocarbons which is a class of 

aromatics. A class of compounds in which two and more 

benzene rings are directly linked by a cut edge known as 

the biphenyl compounds, and their graphs are called 

polyphenyl hexagonal chains [4]. Fig. 1 illustrates ortho-

terphenyl, meta-terphenyl and para-terphenyl. 

In Section 2 we consider two kind of nanotubes and 

show that these two nanotubes have the same  -sets. In 

Section 3 we obtain recurrence relations for some 

polyphenyl hexagonal chains. 

 

 

2.  Maximum independent sets of nanotubes 
 

The most significant nano structures are carbon 

nanotubes and boron triangular nanotubes. See Fig. 1. 

Nanotubes are three dimensional cylindrical structures 

formed out of the two dimensional sheets. 

In this section we show that the maximum 

independent set of these two nanotubes are the same. 

A carbon hexagonal nanotube of order mn  is a 

tube obtained from a carbon hexagonal sheet of n  rows 

and m  columns by merging the vertices of last column 

with the respective vertices of first column (in other words 

we have mn hexagon in this structure). A boron triangular 

nanotube of order mn  is obtained from a hexagonal 

nanotube of order mn  by adding a new vertex at the 

center of each hexagon of the hexagonal nanotube. See 
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Fig. 1. 

 
Fig. 1. Carbon hexagonal sheet and Boron triangular 

 sheet, respectively. 

  

 

Theorem 1 . The  -sets of carbon hexagonal 

nanotube and boron triangular nanotube of order mn  

are the same and have size 
2

nm
. 

Proof. Let CHNT denote a carbon hexagonal 

nanotube of order mn . CHNT is bipartite which is two 

colorable. Let us color the CHNT by red and blue colors. 

It is easy to verify that the set of red vertices form an 

independent set of the CHNT. Let us now show that the 

cardinality of any independent set of a CHNT of order 

mn  does not exceed 
2

nm
. There are m  columns in a 

CHNT of order mn  and each column is a path. Thus a 

CHNT of order mn  is partitioned into m  paths. The 

cardinality of any independent set of a path of order n  

does not exceed 
2

n
. Hence the cardinality of any 

independent set of a CHNT of order mn  does not 

exceed 
2

nm
. The cardinality of set of red vertices of the 

CHNT is 
2

nm
. Hence the set of red vertices is a maximum 

independent set of the CHNT. Now we prove that the set 

of red nodes is a  -set of boron triangular nanotube. A 

boron triangular nanotube is obtained by adding a new 

vertex to the center of each hexagon of carbon hexagonal 

nanotube. These additional vertices are assigned green 

color. Thus the vertices of the boron triangular nanotube 

are partitioned by red, blue and green colors (Fig. 1). A 

green node cannot be a member of any maximum 

independent set of the boron triangular nanotube because 

inclusion of one green node into a maximum independent 

set leads to the exclusion of three red nodes from the 

maximum independent set. Thus the set of red nodes is a 

maximum independent set of the boron triangular 

nanotube. Therefore we have the result.  

 Here we interested in the number of independent sets 

of these nano-structures. We need the following theorem: 

Theorem 2 . ([13]) For any d -regular graph G  of 

order N , and any 0x   

.1))(2(1),( 2d

N

dxxGI   

  

 When 1=x , we obtain the following corollary. 

  

Corollary 1 .  For any N -vertex, d -regular graph G ,  

.1)(2,1)( 21 d

N

dGI  
 

  

It is easy to obtain the following result. 

 

Theorem 3 .   
 

1.  A carbon hexagonal nanotube of order mn  has 

)(2 nmmn   vertices. 

 

2.  A boron triangular nanotube of order mn  has 

nmmn 3)(2   vertices.  

  By Corollary 1 and above theorem we have the 

following result for carbon nanotubes and boron triangular 

nanotubes. 

  

Theorem 4 .  
  

1.  The number of independent sets of carbon hexagonal 

nanotube of order mn  is at most 315

nmmn 

. 

 

2.  The number of independent sets of boron triangular 

nanotube of order mn  is at most 12

3)(2

127

nmmn 

.  

   

 

3. Recurrence relations for independence  
    polynomials of polyphenyl hexagonal chain 
 

Let G  be a cactus graph in which block is either an 

edge or a hexagon. G  is called a polyphenyl hexagonal 

chain if each hexagon of G  has at most two cut-vertices, 

and each cut vertex is shared by exactly one hexagon and 

one cut-edge. The number of hexagons in G  is called the 

length of G . Obviously, a polyphenyl hexagonal chain of 

length n  has n6  vertices and 17 n  edges. Furthermore, 

any polyphenyl hexagonal chain of length greater than one 

has exactly two hexagons with only one cut-vertex. Such 

hexagons are called terminal hexagons. Any remaining 

hexagons are called internal hexagons. The polyphenyl 

ortho-, meta- and para-chain of length n  is denoted by 

nMnO ,  and nP , respectively. Examples of polyphenyl 

ortho-, meta-, and para-chains are shown in Fig. 2. 
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. 
Fig. 2.  Example of polyphenyl ortho-, meta-, 

 and para-chains. 

  

 

In this section we give a recurrence for computing the 

independence polynomial of polyphenyl hexagonal chains. 

Hoede and Li [8] obtained the following recursive 

formula for the independence polynomial of a graph. 

Theorem 5.  For any vertex v  of a graph G , 

)],[(),(=),( xvGxIxvGIxGI   where ][v  is the closed 

neighberhood of v , contains of v , together with all 

vertices incident with v .   

Here we obtain recurrence relations for the 

independence polynomials of nOnP ,  and nM . 

  

Theorem 6 . If 2n , then   

1.  

),()6116(

),()296(1=),(

2
65432

1
32

xOIxxxxx

xOIxxxxOI

n

nn








 

 

2.   

),()499(2

),()265(1=),(

2
65432

1
32

xPIxxxxx

xPIxxxxPI

n

nn








 

3.   

),()694(

),()86(1=),(

2
65432

1
32

xMIxxxxxx

xMIxxxxMI

n

nn








. 

 

Proof. We prove the Part (i). Another parts prove 

similarly.   

1.  To prove this part we apply Theorem 5 for vertex as u  

which shown in Fig. 2. Therefore we have  

 

),,(),(),(),(

=),(

1315 xOIxPxIxOIxPI

xOI

nn

n

 
      (1) 

 

where 4O  and 4O  shown in Fig. 3. Now we obtain 

recurrence relation for the independence polynomial of 

nO . By Theorem 5 for vertex v  as shown in Fig. 2 we 

have  

 

)],[(),(=),( xvNOxIxvOIxOI nnn   

 

).,(),(),(),(= 1314 xOIxPxIxOIxPI nn    

 So we have  

).,(),(

),(),(),(=),(

15

14

xOIxPI

xOIxOIxPIxOI

n

nnn



 
             (2) 

 Now by equations (1) and (2) we have  

 

  ),(),(),(),(),(

=),(

24315 xOIxPIxPxIxOIxPI

xOI

nn

n
 

),(),(),(),(),( 25313 xOIxPIxPxIxOIxPxI nn    

 Therefore  

),())),(),()(,((

),()),(),((=),(

2543

135

xOIxPIxPIxPxI

xOIxPxIxPIxOI

n

nn








 

So we have the result.  

  

 
 

Fig. 3. The graphs 4O  and 4'O  , respectively. 
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